Electrochemical Reduction of CO₂ Using Group VII Metal Catalysts

Jacob A. Barrett,¹ Christopher J. Miller,¹ and Clifford P. Kubiak¹,*

Anthropogenic CO₂ emissions, primarily from the combustion of fossil fuels, are driving climate change at an alarming rate. Our current dependence on carbon-based fuels has motivated research interest in the capture and catalytic reduction of carbon dioxide back to liquid fuels. Electrochemical reduction of carbon dioxide has been intensely researched over the past decade. Here, some of the important contributions made to this field over the past decade using the Group VII transition metal bipyridine catalysts are reviewed. Strategies to further our mechanistic understanding of the electrocatalytic reduction of CO₂ to CO are described.

The Electrochemical Reduction of Carbon Dioxide

The reduction of carbon dioxide back to energy-rich fuels has challenged chemists for over 100 years, with the first reports appearing in the early 1900s [1,2]. Today, the field of solar fuels (see Glossary) seeks to store renewable solar energy as chemical energy by the electrochemical or photoelectrochemical reduction of CO₂ [3,4]. In recent years, the state of California has had surpluses of electricity due to the large quantities of solar electricity coming onto the electrical power grid in the middle of the day [5]. Liquid solar fuels are attractive alternatives to batteries as a means of storage of renewable energy for later use [4,6,7]. The first molecular catalysts for the electrochemical reduction of CO₂ were reported in the 1960s and 1970s. These were transition metal electrocatalysts [8,9] based on metal phthalocyanine complexes [10,11], metal tetraaza-macrocycles [12,13], late metal phosphine complexes [14], and Re (I) bipyridyl carbonyl complexes [15]. In this brief review, we present the current status of the field and its future.

A molecular electrocatalyst both participates in an electron transfer reaction (at an electrode) and accelerates the rate of a chemical reaction. An electrocatalyst both supplies charge and performs inner sphere chemical reduction or oxidation of an otherwise kinetically stable substrate. Thus, both the electron transfer and the chemical kinetics must be fast for an electrocatalyst to be efficient. Ideally, the redox potential (E₀) of the electrocatalyst electron transfer reaction should thermodynamically match the chemical potential difference between products and reactants (i.e., the free energy of the reaction) of the catalyzed process (e.g., reduction of CO₂) [16]. A significant advantage of molecular electrocatalysis is that these factors can be optimized by appropriate ligand design, choice of metal, and d-electron configuration. New dimensions in the optimization of molecular catalysts have also been identified. In the past decade, breakthroughs in our understanding of how molecular catalysts respond to their local environment, such as solvent, electrolyte, cofactors, and applied bias, have given researchers new tuning strategies. Herein, the knowledge that has been gained recently on the electrochemical reduction of CO₂ by molecular catalysts is presented and key methods are identified where research has continued to expand our understanding and control of the CO₂ reduction reaction.

This brief review focuses on the production of CO from CO₂ using Group VII (Mn and Re) metal catalysts. There is a plethora of important research on the production of formate [17–21] from...
CO₂ as well as formaldehyde [22], methanol [23], and multicarbon products [24], which are not discussed in this review. The focus of this review is recent research on the reaction mechanisms and current understanding of how immobilization on the electrode surface alters Mn and Re bipyridyl carbonyl catalysts.

Group VII Metal Bipyridine Electrocatalysts

Lehn and coworkers discovered that Re(bpy)(CO)₃Cl catalyzes electrochemical CO₂ reduction [15]. Lehn reported that, under inert conditions, Re(bpy)(CO)₃Cl showed a reversible one-electron reduction followed by a second, irreversible one-electron reduction. Under an atmosphere of CO₂, there is a large current increase following the second reduction, indicative of CO₂ reduction catalysis. This system reduced CO₂ to CO at −1.49 V vs saturated calomel electrode (SCE) (ca −1.9 V vs Fe⁺/⁰) in 9:1 N,N-dimethylformamide (DMF)/H₂O with a very high Faradaic efficiency (FE) for CO over H₂ evolution (FECO = 98%). However, the rate of catalysis, defined by the turnover frequency (TOF), was reported to be relatively slow (TOF = 21.4 h⁻¹). The catalyst operates best at a 1.0 V overpotential (relative to the standard potential for protic CO₂ reduction) [16,25,26]. Furthermore, 100% CO selectivity is observed in wet MeCN or DMF or with a weak acid present such as trifluoroethanol (TFE) or phenol (PhOH). By optimization of reaction conditions, a maximum TOF greater than 500 s⁻¹ could be achieved with greater than 10⁷ turnover number (TON) (Figure 1).

Mechanistic Studies of Re Bipyridine Catalysts

In 2010, Kubiak and coworkers initiated studies of the Re(bpy)(CO)₃Cl catalyst focused on mechanistic understanding and identification of design principles that could be used to develop new

![Diagram](https://example.com/diagram.png)

Figure 1. Proposed Mechanism for the Electrocatalytic Reduction of CO₂ by Re(bpy)(CO)₃Cl [27]. See also [25,28–30]. Abbreviations: TOF, turnover frequency; TON, turnover number.

Glossary

- **Cyclic voltammetry (CV):** A typical experiment uses a reference electrode (a standard potential), a working electrode (where the potential is applied), and a counter electrode (closes the current circuit). This electrochemical technique measures the current in the electrochemical cell as a function of the applied potential at the working electrode.
- **dz² orbital:** Refers to the atomic orbital that occupies the z-axis of a metal atom.
- **Electrocatalyst:** A molecule that can change and increase the rate of an electrochemical reaction without being consumed in the reaction.
- **Electrochemical reduction:** A chemical reaction involving the transfer of electrons from the electrode to the surface.
- **Faradaic efficiency (FE):** The percentage of the charge transferred in a system that facilitates a specific reaction.
- **Hammett parameter:** A linear free-energy relationship for modeling the electronic effect of substituents on aromatic systems.
- **IR spectroelectrochemistry (IR-SEC):** IR spectroscopy of a specially designed electrochemical cell, which provides qualitative and quantitative information on the processes occurring under applied potential.
- **Overpotential:** The potential difference between the standard potential and the potential where the redox event is observed, or the ‘extra’ potential needed to drive a redox reaction.
- **Solar fuel:** A fuel synthesized from small ubiquitous molecules (i.e., water, carbon dioxide, nitrogen) using solar energy.
- **Stopped flow:** A technique for observing chemical reaction kinetics on the millisecond timescale.
- **Sum-frequency generation (SFG):** A nonlinear spectroscopic technique used to analyze surfaces. This typically involves two laser incident sources, which generate an output that is the sum of the two incident light sources.
- **Tafel equation:** A plot of the Tafel equation, which relates the rate of an electrochemical reaction to the overpotential applied to achieve that rate.
- **Turnover frequency (TOF):** A measure of the rate of a catalyst and calculated as the number of chemical conversions of a substrate per second facilitated by the catalyst. This is related to the TON.
and better catalysts [31]. IR spectroelectrochemistry (SEC) studies and independent syntheses of the reduced states indicated that significant Re(0)–Re(0) dimer formation occurs after the first reduction [32]. The second reduction is required to break the Re–Re bond to produce the proposed active catalyst, [Re(bpy)(CO)3]−. To inhibit dimer formation, tert-butyl groups were added to the 4,4′ positions of the bipyridine ligand of the catalyst [Re(fBu-bpy)(CO)3Cl] [31]. IR-SEC indicated significant inhibition of dimer formation with the tert-butyl bpy complex. The IR-SEC studies were also important in establishing intermediates that are formed in the reduction of Re(fBu-bpy)(CO)3Cl to the active catalyst, [Re(fBu-bpy)(CO)3]−. These studies revealed that the first reduction is bpy ligand based, but this species is unstable with respect to halide ligand dissociation and electron migration to the rhenium center to afford the radical •Re(fBu-bpy)(CO)3. Following the second reduction, the anion [Re(fBu-bpy)(CO)3]− has two ν(CO) bands observed at 1940 and 1832 cm−1 (Figure 2). Density functional theory (DFT) [29] and Raman [33] and X-ray absorption spectroscopy [29] of this species indicate that the first reduction is ligand based, followed by a reduction at the metal center to produce the catalytically active species, which is best described as [Re(0)(fBu-bpy•)(CO)3] where one electron is localized to the Re a2 orbital and the second to the bpy π* orbital.

The rate of catalytic reduction of CO2 by Re(fBu-bpy)(CO)3Cl exhibits a first-order kinetic dependence on [CO2]. Mechanistic studies used IR stopped-flow experiments to examine the [CO2] dependent reaction of [Re(fBu-bpy)(CO)3]− with CO2 (Figure 2) [34]. The lowest energy ν(CO) band at 1832 cm−1 decays with a first-order dependence on [CO2] leading to a new band at 1940 cm−1 even in the absence of Brønsted acid, where the solvent acts as the proton source [25]. Thus, on the timescale of seconds, the reaction with CO2 is essentially a two-electron oxidative addition. The Re(I) complex produced by the reaction with CO2 corresponded to Re(COOH)(fBu-bpy)(CO)3. We have come to call such species ‘hydroxycarbonyls’ rather than the frequently used term ‘metallo-carboxylic acid’. The reason for this is that the species is a much better OH− which is the maximum number of chemical conversions the catalyst will perform of the desired chemical conversion.

Figure 2. Proposed Mechanism for CO2 Binding for [Re(fBu-bpy)(CO)3]− and IR Stretching Frequencies Associated with the Reduced Anion (Black) and Hydroxycarbonyl (Red). (A) 3D plot of IR spectra for 2.5-mM Re(fBu-bpy)(CO)3Cl with 32-mM CO2 in tetrahydrofuran (THF). (B) IR spectra before (black) and after (red) reaction with CO2 [27]. See also [25,29,34].
donor than acid. It readily combines with a second proton to produce [Re(tBu-bpy)(CO)4]+ and H2O. The intermediate, [Re(COO)(tBu-bpy)(CO)3]+, is not observed. Reduction of [Re(tBu-bpy)(CO)4]+ regenerates the active catalyst [Re(R-bpy)(CO)3]−, liberating CO. Independent synthesis of the Re(I) tetracarbonyl species [Re(bpy)(CO)4](OTf) and [Re(tBu-bpy)(CO)4](OTf) determined that their reduction potentials were almost 500 mV more positive than the catalytic operating potential, implying that CO elimination and catalyst regeneration is not rate limiting [25,35]. The single electron reduction of these d6 Re(I) complexes produce formally 19-electron intermediates, which greatly labilize the CO ligands. Combining these studies, a mechanism (shown in Figure 1) was proposed for CO2 reduction with the Re(R-bpy)(CO)3X catalysts (R = tBu, H, or CH3; X = halide, solvent). DFT calculations on the Re-centered radical •Re(bpy)(CO)3 indicated that the insertion of CO2 into a Re carboxylate dimer [Re(Me-bpy)(CO)3]2(μ-CO2) provides another possible pathway for CO2 reduction by a proton-independent process that produces CO and CO32− [25]. This proposed mechanism was also supported by DFT calculations from Agarwal, Schaefer, and coworkers [36].

In the stopped-flow experiments with [Re(tBu-bpy)(CO)3]−, the kinetic selectivity for CO2 reduction over H+ reduction was greater than 50:1 when MeOH was used as the H donor. The reduced species [Re(tBu-bpy)(CO)3]− reacts with CO2 approximately ten times faster than [Re(bpy)(CO)3]−, suggesting an additional effect of the electron-donating tBu substituents. A DFT theoretical investigation suggests that the high selectivity for CO2 reduction over H2 evolution is due to the mixed metal–ligand character of the ground state of [Re(R-bpy)(CO)3]− [29]. The formation of a metal hydride requires the electron density to be localized in the dz2 orbital. It is suggested that the ‘non-innocent’ ground state enables reaction with CO2 through σ and π interactions with a lower reorganization energy near the transition state. Thus, CO2 reduction is kinetically favored over H2 evolution [29]. The DFT study indicates that the formation of the hydroxycarbonyl complex has a lower activation energy than protonation of [Re(bpy)(CO)3]− to produce the Re–hydride, although the hydride is thermodynamically more stable (Figure 3) [26].

The overpotential and CO2/H+ selectivity are affected by the acid used. The lower the pKₐ of the acid, the higher the catalytic current and the lower FE for CO2 reduction with Re(tBu-bpy)(CO)3Cl. This was observed using a range of acids like acetic acid (pKₐ = 23.5 in MeCN), phenol (pKₐ = 29.1 in MeCN), and TFE (pKₐ = 35.4 in MeCN). The presence of a proton donor helps to achieve the stable intermediate Re(COOH)(bpy)(CO)3; however, stronger proton donors result in increased H2 reduction.

Mechanistic Studies of Mn Bipyridine Catalysts

Manganese bipyridine catalysts have been studied as more Earth-abundant and less expensive alternative CO2 reduction catalysts compared with the Re(R-bpy)(CO)3X catalysts [37–45]. Originally reported as unreactive towards CO2 [35], Mn(R-bpy)(CO)3X compounds were later found by Bourrez, Deronzier, and colleagues to show two one-electron reductions in their cyclic voltammograms and to catalytically reduce CO2 provided significant quantities of water are present. Electrocatalysis occurs at the second reduction and at lower overpotentials (~400 mV) than Re(R-bpy)(CO)3X [37]. On closer examination, it was learned that the Mn(R-bpy)(CO)3X compounds have important and interesting mechanistic differences from their Re counterparts.

IR-SEC of Mn(tBu-bpy)(CO)3Br indicates that the first reduction is metal based and subsequent bromide loss results in a five-coordinate Mn-centered radical [46]. This quickly dimersizes to form [Mn(tBu-bpy)(CO)3]2. The dimerization rate is 109 times faster than the Re analog [26,47,48]. The doubly reduced species [Mn(tBu-bpy)(CO)3]− is formed (analogous to [Re(bpy)(CO)3]−) after reductive cleavage of the dimer, observed after the second reduction wave in cyclic voltammetry (CV) [37,47,49].
The formation of Mn0–Mn0 dimers is hindered by the use of bulky bipyridine ligands [50]. This strategy was used to bypass the dimerization/high-potential dimer reduction steps. In general, a radical has a less-negative reduction potential than a dimer of two of those radicals united by a covalent bond. Thus, Mn(mes-bpy)(CO)3Br (where mes-bpy = 6,6′-dimesityl-2,2′-bipyridine) is reduced via a single two-electron process (Figure 4) to form the catalytically active species \([\text{Mn(mes-bpy)(CO)3}^−]\). IR-SEC and chemical reductions with KC8 further confirmed the formation of both the singly reduced and the doubly reduced Mn complexes at the same potential. This reduction potential (−1.55 V vs Fc+/0) is hundreds of millivolts lower than other Mn(R-bpy)(CO)3Br complexes, resulting in a lowering of the overpotential. CO2 binding occurs at the reversible reduction potential with modest current after −1.6 V vs Fc+/0. However, at more-negative potential (−2.0 V vs Fc+/0), an unexpected and quite spectacular ‘super-catalysis’ (TOF = 5000 s⁻¹) occurs where there are no known redox processes for the catalyst. IR-SEC under CO2 with a Brønsted acid reveals two potential-dependent catalytic pathways. The super-catalysis pathway occurs by reduction of the Mn(II) hydroxycarbonyl intermediate \([\text{Mn(COOH)(R-bpy)(CO)3}]^−\), which is formed in the electrochemical two-electron reduction at −1.55 V vs Fc+/0 followed by protonation to form CO and water. The ‘slow-catalysis’ pathway occurs by protonation of the hydroxycarbonyl intermediate, which produces \([\text{Mn(mes-bpy)(CO)4}]^{1+}\) and water, followed then by reduction.

An alternative proposal was raised was that the Mn–Mn dimer and not the anionic species was the active catalyst. The Mn0–Mn0 dimer photochemically and electrochemically reduces CO2 to formic acid or CO at a much slower rate than electrocatalytic CO2 reduction to CO by \([\text{Mn(R-bpy)(CO)3}]^{−}\) [26,47,48]. The electrocatalytic reaction was experimentally determined to follow kinetics that are first-order in catalyst, suggesting that the catalytic intermediate should be a mononuclear single-site catalyst and not dimeric [26,51,52].

In general, most of the Group VII CO2 reduction electrocatalysts show kinetics where the rate-limiting step is C–O bond cleavage [50,53]. This has drawn attention to the question of how to...
facilitate C–O bond breaking of the bound CO₂ molecule to enhance the catalytic rate at low overpotential. Two promising strategies are use of strong Bronsted acids [54] or Lewis acids [55]. Lewis acids were shown to accelerate the rate of the Mn(mes-bpy)(CO)₃Br 'slow' process [50]. The addition Mg(OTf) increased the catalytic rate tenfold at 300 mV overpotential, one of the lowest observed overpotentials for homogeneous CO₂ reduction (Figure 4). CV indicated that the reaction is first order in Mg²⁺ and electrocatalyst, but second order in CO₂. In the proposed mechanism after CO₂ binds to the reduced catalyst, [Mn(mes-bpy)(CO)₃]⁻, Mg²⁺ and a second equivalent of CO₂ undergo a condensation to form a Mg(C₂O₄) intermediate, which disproportionates to CO and MgCO₃. After the complex releases MgCO₃, [Mn(mes-bpy)(CO)₃]⁻ is formed. Two-electron reduction of the tetracarbonyl species regenerates the catalytically active species [Mn(mes-bpy)(CO)₃]⁻ and releases CO. IR-SEC indicates carbonate/bicarbonate formation at potentials more negative than −1.4 V vs SCE (ca −1.8 V vs Fc/Fc⁺) when a new, intense band appears at 1650 cm⁻¹. Magnesium carbonate, MgCO₃, is insoluble in MeCN and precipitates onto the electrode, hindering activity. However, chelated Lewis acids were shown to circumvent this solubility issue. [Zn(cyclam)]²⁺ can be used to improve the electrochemical reduction of CO₂ by Mn(mes-bpy)(CO)₃Br [56].
Group VI Metal Bipyridine Electrocatalysts
The Kubiak and Cowan groups have examined electrocatalytic CO2 reduction with bipyridine complexes of Group VI metals. The metal tetracarbonyl bipyridyl complexes M(R-bpy)(CO)4 (M = Mo, W; R = H, tBu) are active for CO2 reduction with quantitative FE for CO at −2.3 V vs SCE (ca −2.7 V vs Fc+/0) in MeCN [57]. DFT calculations revealed stronger π-back bonding into the CO ligands with Group VI metals compared with Re, suggesting that CO release from [M(R-bpy)(CO)4]2− limits the CO2 reduction rates of these complexes. The catalytic onset potential of [M(bpy)(CO)4] (M = Mo, W, Cr) was anodically shifted at Au electrodes compared with glassy carbon (GC) electrodes [58]. Cowan and coworkers used vibrational sum-frequency generation (SFG) spectroscopy to show that CO loss is enabled by strong interactions with the Au surface, providing access to a lower-energy pathway for generation of the active species [M(bpy)(CO)3]2− [59]. This is an example of chemically relevant surface interactions that the electrode materials may have in otherwise ‘homogeneous’ molecular electrocatalysis.

Immobile Molecular Catalysts
Heterogeneous catalysts are typically the least selective and are mechanistically challenging to study. While in practice, the most important step in a catalytic process for fine chemical production, like pharmaceuticals, is selectivity, solid-phase catalysts are often used in industrial processes due to high stability, activity, lower loadings of active catalyst, ease of separation of products, and facile scalability. However, highly selective heterogeneous catalyst discovery is hindered by a lack of mechanistic understanding and thus often relies on high-throughput screening [60]. By contrast, molecular catalysts are among the most selective and mechanistically well understood catalysts. Immobilizing molecular catalysts onto surfaces allows direct control and the study of heterogeneous active sites, providing mechanistic insight on surface processes. One example of this is the Group VII electrocatalysts, as they are sufficiently understood with regard to their homogeneous reaction mechanisms and have thus been used to enable and understand the mechanisms at an electrode surface that produce a highly selective CO2 reduction system and provide insight that is unattainable for heterogeneous catalysts presently.

Covalent and noncovalent surface attachment strategies can produce functional heterogenized molecular catalysts [61–64]. Immobilization techniques have ranged from polymer films [65,66] to Au–S self-assembled monolayers, electrografting to form new bonds [67], and adsorption to graphitic surfaces [68,69]. While the success of CO2 reduction and stability vary for these systems, they have provided new insights on the chemistry at electrode surfaces.

Alkyne and alkene modified Re(bpy)(CO)3Cl catalysts have been attached to a carbon electrode via polymer films [70–72]. While these systems were able to reduce CO2 to CO, the long-term stability was affected by catalyst degradation and highlighted the need for more controlled immobilization techniques. The Marinescu group used a (2,2′-bipyridine)-5,5′-bis(diazonium) rhenium complex to make conjugated polymers attached to electrode surfaces [73]. These systems were able to reduce CO2 to CO at a FE of 99% at −2.25 V vs Fc+/0 (Figure 5). To bypass polymer films, Re(tBu-bpy)(CO)3Cl was physically adsorbed onto multiwall carbon nanotubes (MWCNTs) and was found to be highly active for CO2 reduction under aqueous conditions (0.5 M KHCO3). Controlled-potential electrolysis at −0.56 V vs reversible hydrogen electrode (RHE) (−1.2 V vs Ag/AgCl) showed these electrodes produced CO from CO2 with 99% selectivity over 7 h and maintained a consistent current density over 60 min (Figure 5). The observed catalytic current density increased with more catalyst, up to 23.1 wt% Re; however, at 25.2 wt% Re in the composite material, current density decreased. This result suggests that the bulk of the material loaded into the MWCNTs is not participating in electrocatalysis.
The Surendrananth group attached the Re(bpy)(CO)3Cl catalyst to graphite using their surface conjugated pyrazine linkage [74]. The catalyst was able to reduce CO2 to CO in acetonitrile with current densities greater than 50 mA/cm2. Importantly, the Tafel plot showed linearity over a 0.6-V range, suggesting a change in mechanism, with higher TOF at lower overpotentials and no clear plateau at higher potentials.

In addition to understanding the surface and the strength of attachment, it is important to understand how modification of the bipyridine ligand with a surface immobilizable group affects the catalyst. In the homogeneous case, the first reduction of the Re bpy catalysts is bipyridine-ligand centered and therefore the redox potential is affected by bipyridine substituents (Figure 6) [53]. A more-negative Hammett parameter for the ligand is correlated with a more-negative reduction potential for the complex. However, energy matching of the bipyridine ligand and Re d2 orbitals is also important, as strong electron withdrawing groups cause more positive catalyst reduction potentials, but they also encourage the charge to localize on the bpy ligand, lowering the reactivity of the Re center with CO2. This understanding has led to significant optimization of the homogeneous system. When immobilized on the surface, this same approach of understanding the electronics of the Re center can lead to further improvement.
Although the use of self-assembled monolayer approaches for Re(S-bpy)(CO)₃Cl attachment to a gold electrode is unable to survive the reducing potentials needed for catalysis, this system enables SFG spectroscopy to provide insight on the fundamental physical chemistry at the surface (Figure 6) [79,80]. The symmetric ν(CO) band shifts linearly ~25 cm⁻¹ over ~1 V of applied potential. No Faradaic current flows in this experiment. The complex is simply responding to the electric field produced by applying a bias to the electrode. This shift in the absence of current is known as the vibrational Stark–Lo Surdo effect. Dawlaty observed this phenomenon with immobilized mercaptobenzonitrile. When compared with the ν(CN) energies of various organic benzonitriles, Dawlaty showed a correlation between the applied potential and the Hammett parameter. He hypothesized that polarized electrode surfaces could be used as tunable functional groups [81]. When reexamining the Re SAM work, the ν(CO) shift due to the applied potential is 3–4-times larger than would be caused by Hammett substitutions. This is evidence that the field effect observed by Dawlaty can be extended to organometallic catalysts (Figure 6). The study of the effects of strong local electric fields on molecular catalysts near electrode surfaces will continue to be an important area of research.

Manipulating Reaction Pathways of Molecular Catalysts

Nature sets the standard for efficient and reversible CO₂ reduction. The metalloenzyme carbon monoxide dehydrogenase (CODH) contains a key dinuclear Ni–Fe active site that catalyzes CO₂ reduction to CO at a low overpotential (η < 0.1 V) [83]. Researchers have made attempts to mimic CODH by synthesizing catalysts with multiple reactive metal centers. Naruta and colleagues...
developed co-facial iron porphyrin dimers where two triphenylporphyrins were connected by an ortho- or meta-substituted benzene [84,85]. The ortho-attached dimer exhibited the best catalytic performance in 10% H2O/DMF with 95% FeCO2 and a high TOF (TOF = 4300 s−1) at a moderate overpotential (η = 0.66 V), which was comparable with the mononuclear complex (FeTPP). The Fe–Fe separation (3.7–6.2 Å) is proposed to create a molecular pocket that can bind CO2. The Fe–Fe arrangement is likely to enable an intramolecular “push–pull” mechanism. When reduced, one Fe center donates an electron pair onto CO2 as a Lewis base and the second Fe center promotes C–O bond cleavage as a Lewis acid.

Machan and colleagues reported a hydrogen bonding bimolecular assembly using two acetoamido (dac) functionalized electrocatalysts [Re(dacbpy)(CO)3Cl and Mn(dacbpy)(CO)3Br] [86]. Electrochemical studies showed that the redox features of the bimolecular assembly show electronic interactions between the two catalysts. CV in DMF indicated that metal–metal bond formation occurs under conditions where the respective homobimetallic analogs are not formed, which suggests that the heterobimetallic interaction reduces the redox potential. An increased catalytic current was observed for the bimolecular assembly under CO2, which is consistent with Fe–Fe cooperativity. Control experiments with methyl functionalized catalysts [Re(CH3-bpy)(CO)3Cl and Mn(CH3-bpy)(CO)3Br] showed no increased current under CO2. Re(dacbpy)(CO)3Cl is likely to operate with a similar bimolecular mechanism based on DFT calculations, molecular dynamics simulations, and IR-SEC observations [87]. This cooperative effect was also observed for a peptide functionalized Re-bpy catalyst, which was designed to promote hydrogen bonding between complexes and homodimer formation [88].

Concluding Remarks
The past decade has seen enormous increases in the activities of and decreases in the overpotential for molecular electrocatalysts for CO2 reduction. Future studies should explore the tuning of heterodinuclear complexes to decrease overpotentials further and maintain high reaction rates (see Outstanding Questions). IR-SEC and DFT have provided richly detailed mechanistic understanding of electrocatalysts. IR-SEC is specifically useful for the Group VII metal catalysts, as their three carbonyl groups are observed in the IR range ~2100–1800 cm−1 and are greatly affected by the oxidation state of the metal. The use of Lewis or Brønsted acids to enhance CO selectivity is currently underutilized. Careful selection of the appropriate acids may provide similar or more leverage in manipulating the catalytic pathways than synthetic alteration of the ligands. The concept of microenvironments, which provide enzyme-like pockets for electrocatalysts with efficient mass transport of reactants and products, is particularly promising. Further development of electrocatalytic systems that reduce CO2 at high catalytic rates and low overpotentials are crucial for the development of a sustainable chemical process to remediate anthropogenic CO2 emissions. The key challenge facing the field of molecular electrocatalysis of CO2 reduction is to move beyond the catalysis of two-electron processes such as CO and HCOOH formation to higher organic small-molecule liquid fuels.

Acknowledgments
J.A.B acknowledges a UCSD Chancellor’s Postdoctoral Fellowship. C.P.K. gratefully acknowledges funding from the Air Force Office of Scientific Research, United States, Grant No. FA9550-17-0198.

References

